COVID-19 Antiviral and Pharmacotherapy Information

Supportive therapy is the cornerstone of treatment. Recent IDSA and NIH guidelines reinforce this general approach to pharmacological treatment, with data for only a few specific therapies in certain circumstances. The treatment framework below is adapted from the NIH, which is routinely updated at www.covid19treatmentguidelines.nih.gov/therapeutic-management/.

Patient Profile

<table>
<thead>
<tr>
<th>Patient Profile</th>
<th>Recommendation</th>
</tr>
</thead>
</table>
| Not hospitalized, mild to moderate COVID-19 | • Neutralizing antibodies (bamlanivimab/etesevimab or casirivimab/imdevimab) are recommended for outpatients that meet high-risk criteria for progressive COVID-19 disease under FDA Emergency Use Authorization (EUA).
• Should NOT use Dexamethasone, Remdesivir, or Baricitinib |
| Hospitalized, but does Not require Supplemental Oxygen | • Remdesivir for patients at high-risk of COVID-19 progression (see drug sections below)
• Should NOT use Dexamethasone or Baricitinib |
| Hospitalized and Requires Supplemental Oxygen | • Recommend clinical trial enrollment
• Otherwise, use one of the following options:
• SUPPLEMENTAL OXYGEN ≤5L/min:
• Remdesivir
• SUPPLEMENTAL OXYGEN >5L/min:
• Baricitinib plus Remdesivir* OR
• Dexamethasone plus Remdesivir* |
| Hospitalized and Progressive Respiratory Failure Requiring High Level Oxygen Delivery / Non-invasive Mechanical Ventilation | • Recommend clinical trial enrollment
• Dexamethasone plus Remdesivir* OR
• Baricitinib plus Remdesivir*
• See text for additional details on anti-inflammatory combination therapy |
| Hospitalized and Requires Invasive Mechanical Ventilation or ECMO | • Use one of the following options:
• Dexamethasone plus Remdesivir OR
• Dexamethasone alone
• See text for additional details on anti-inflammatory combination therapy |

see below for patient criteria and risk of adverse effects to guide choice

Therapies below have been tiered based on the available data, current availability, toxicity profile, and practical considerations specific to Nebraska Medicine. Updates are expected during this fluid situation.
Preferential:

ACTT-4: NIH Adaptive Clinical Trial of Remdesivir + either Dexamethasone or Baricitinib (NCT04640168) – E-mail Dr. Andre Kalil (akallil@unmc.edu) and LuAnn Larson (llarson@unmc.edu) for evaluation

- **Dosing:** Remdesivir 200mg IV once, then 100mg IV daily for duration of hospitalization or up to 10 total days PLUS Dexamethasone 6mg IV daily for up to 10 days vs. baricitinib 4mg PO daily for up to 14 days while hospitalized
- **Adverse Effects:** Generally mild severity – GI intolerances, LFT abnormalities, infusion-related reactions, cytopenias
- **Inclusion Criteria:** Age ≥18; Hospitalized with symptoms of COVID-19 on supplemental oxygen; Laboratory confirmed SARS-CoV-2 within ≤14 days;
- **Exclusion Criteria:** On mechanical ventilation, on or being prepared for ECMO therapy; AST or ALT >5x ULN; eGFR<20 or on dialysis; neutropenia (ANC <700/mL), lymphopenia (ALC<200/mL); platelets<50/mL; pregnancy or breast feeding; anticipated discharge within 3 days; history of chronic liver disease; receipt of ≥5 doses of remdesivir or >1 dose of dexamethasone 6mg equivalent or more prior to enrollment; receipt of small molecule tyrosine kinase inhibitors, monoclonal antibodies or other agents targeting cytokines (TNF inhibitors, anti-IL-1 or IL-6 [tocilizumab]), convalescent plasma or IVIG for COVID-19; active or latent Tb, treated less than 4 weeks with appropriate therapy - if known (no screening required).

MK-4482 (molupiravir) Phase 2/3 Randomized Clinical Trial for Outpatients or Inpatients with COVID-19 (NCT04575597 & NCT04575584): E-mail Dr. Diana Florescu (dflorescu@unmc.edu) and Mason McCain (mason.mccain@unmc.edu) for evaluation

- **Mechanism:** Antiviral that inhibits replication of SARS-CoV-2; different mechanism than remdesivir
- **Dosing:** 200mg, 400mg, or 800mg PO every 12 hours x 5 days vs. placebo
- **Adverse Effects:** Unknown
- **Inclusion Criteria:** Age ≥18; PCR or antigen confirmed SARS-CoV-2 infection within past 10 days; onset of COVID-19 symptoms ≤10 days and at least one symptom remains present at randomization; negative pregnancy test within 24 hours for women of child-bearing age; willing and able to use contraception or abstinence (for 7 months in women, 90 days in men)
- **Exclusion Criteria:** Critical Covid-19 with any of the following: Respiratory failure defined as mechanical ventilation or high-flow oxygen (>2L/min with fraction of delivered oxygen ≥0.5), non-invasive positive pressure ventilation, shock (<90 DBP or <60 SBP), multi-organ dysfunction; eGFR<30 mL/min or on dialysis; Immunosuppressed as defined by: HIV viral load > 50/mL or CD4 <200 cell/mL, chemotherapy required with 6 weeks before randomization, ANC <500/mL, HSCT; active hepatitis B or C infection (defined as HBsAg-positive or detectable HCV RNA), platelet count <100,000/mcL or received platelet transfusion within 5 days prior to randomization; history of acute pancreatitis within 3 months of randomization or any chronic pancreatitis; baseline heart rate <50 bpm, expected survival ≤2 days; pregnancy or breast feeding; receiving ECMO therapy
- **Notes:** Patients that have received monoclonal antibodies are still eligible for enrollment

Regeneron Monoclonal Antibody Clinical Trial (NCT04426695) – E-mail Dr. Diana Florescu (dflorescu@unmc.edu) and Mason McCain (mason.mccain@unmc.edu) for evaluation

- **Dosing:** Low-dose (1200mg) or high-dose (4000mg) combination monoclonal antibody preparation IV once (vs placebo)
- **Adverse Effects:** Infusion-related reactions and hypersensitivity
- **Inclusion Criteria:** Age ≥18; PCR or antigen confirmed SARS-CoV-2 infection within past 3 days; onset of COVID-19 symptoms ≤10 days; hospitalized ≤3 days, not on mechanical ventilation
- **Exclusion Criteria:** Expected survival ≤2 days; pregnancy or breast feeding; receiving ECMO therapy; new-onset stroke or seizure; receiving any form of dialysis due to COVID-19; requiring vasopressors for circulatory shock; receipt of convalescent plasma or IVIG in past 5 months

Remdesivir 39,66,79

- **Dosing:** 200mg IV once, then 100mg IV daily for a recommended 5 total days of therapy (discontinue earlier if ready for discharge). 10 days of therapy was studied, although no additional benefit has been identified from a longer course.
- **Adverse Effects:** Generally mild severity – GI intolerances, LFT abnormalities, infusion-related reactions

 - **Patient Criteria:** Age ≥18; PCR confirmed SARS-CoV-2 infection with symptoms starting < 10 days ago or progressive COVID-19 disease; and one of: 1) requiring supplemental oxygen 2) SpO2 ≤ 94% on room air 3) infiltrates on chest imaging.
 - Example: Patients with high-risk criteria that may benefit from early treatment before requiring oxygen include, but are not limited to: age ≥65, BMI ≥35, immunosuppression, or other chronic health conditions.
 - For children <12 years old and <40kg, EUA documentation requirements remain in place.
 - Please refer to the institutional guidance document on Ordering Remdesivir for additional notes and processes. Cost: $3,744 per 5-day course AWP.
Preferential (continued):

Dexamethasone

- **Dosing**: 6mg PO or IV once daily for up to 10 days (discontinue prior to discharge or when recovered)
- **Adverse Effects**: Hyperglycemia, gastrointestinal bleeding, secondary infections, delirium, hypertension, fluid retention, insomnia, increased appetite
- **Patient Criteria**: Recommended for patients with COVID-19-related ARDS that are requiring mechanical ventilation. Consider in those with acute respiratory failure requiring increasing supplemental oxygen, specifically >5L/min or FiO₂ > 40%. Only those patients with acute hypoxemic respiratory failure due to COVID-19 (not due to chronic comorbidities) are expected to benefit. Has not been studied with remdesivir, but they are regularly used together. The ongoing ACTT-4 study is comparing this combination to baricitinib with remdesivir. Enrollment in the clinical trial is recommended when possible.
- **Notes**: A large randomized, open-label trial demonstrated that dexamethasone provided significant reductions in mortality, hospital discharge within 28 days, and progression to invasive mechanical ventilation or death. Subgroup analysis by level of respiratory support revealed that benefit was seen in patients receiving invasive mechanical ventilation or supplemental oxygen, but not in patients who were not receiving supplemental oxygen or respiratory support. More information on steroids generally can be found below within the Drug Class Guidance section. Cost: $12/course AWP

Baricitinib Emergency Use Authorization (EUA)

- **Mechanism**: JAK and AAK1 inhibitor (anti-inflammatory agent) proposed for use to counter COVID-19 cytokine storm.
- **Dosing**: 4mg PO daily (adjusted for renal function) for up to 14 days until recovered or discharged (2mg/d if 2-8 years old)
- **Adverse Effects**: Long-term use for rheumatoid arthritis showed low rates of opportunistic infections including pneumonias and VTEs; short-term treatment of COVID-19 was very well-tolerated in ACTT-2 trial.
- **EUA Criteria**: Hospitalized patients requiring remdesivir and respiratory support. VTE prophylaxis recommended. Use SmartPhrase in note before ordering: “.baricitinibEmergencyUse”.
- **Notes**: Evaluated in combination with remdesivir in the NIH adaptive clinical trial ACTT-2. Compared to remdesivir alone, the combination resulted in a statistically significant reduction in median time to recovery of one-day overall and eight-days in the subset of patients on high-flow oxygen or non-invasive ventilation. Similar to dexamethasone, the largest improvement in clinical outcomes was seen in patients with severe disease. Cost: $2,500 per 14-day course AWP
- **Patient Criteria**:
 - Consider as an option with remdesivir for patients on supplemental oxygen > 5L/min, high-flow, or noninvasive ventilation. However, press release results of the COV-BARRIER study indicates equivocal benefit in this population.
 - Recommended with remdesivir for patients who cannot tolerate corticosteroids (for example, in patients with poorly controlled hyperglycemia, delirium, or gastrointestinal bleeding).
 - In patients with progressive respiratory failure despite standard treatment. Baricitinib and dexamethasone together are not routinely recommended, but may be considered on an individual basis for patients with severe ARDS who are likely to have an intense inflammatory dysregulation (e.g. PaO₂/FiO₂ < 100) where a clinician feels the potential unknown benefit outweighs the risk of increased immunosuppression.

Monoclonal Antibodies Emergency Use Authorization (EUA)

- **Dosing**: Bamlanivimab/etesevimab 700mg/1400mg or casirivimab/imdevimab 1200mg each, IV once
- **Adverse Effects**: Infusion-related reactions and mild hypersensitivity
- **EUA Patient Criteria**: Outpatients with mild, symptomatic COVID-19, not requiring supplemental oxygen for COVID-19 (or an increase from baseline in those already on supplemental oxygen). Must meet at least one of the following criteria:
 - Age ≥65 years old
 - Body mass index (BMI) ≥35
 - Chronic Kidney Disease
 - Diabetes
 - Immunosuppressive disease or treatment
 - Age ≥55 years old AND Cardiovascular disease, Hypertension, or COPD
 - Age 12-17 years old AND
Tocilizumab

- **Mechanism:** IL-6 inhibitor for cytokine release syndrome (CRS) in oncology patients receiving CAR-T cell therapy
- **Dosing:** 8mg/kg IV once (max 800mg)
- **Adverse Effects:** Neutropenia can be long lasting so risk of secondary infection is possible and has not been longitudinally evaluated in clinical trials. In one report, superinfections were identified in 54% of tocilizumab-treated patients compared to 24% of untreated COVID patients. In long-term use for RA, intestinal perforation has been reported.
- **Patient Criteria:** Patients with progressive respiratory decline on high-flow oxygen (30L/min), non-invasive ventilation, or recent mechanical ventilation despite anti-inflammatory therapy with dexamethasone or baricitinib can be considered for therapy after weighing the potential benefit with risk of long-term immunosuppression. The goal of treatment is prevention of progression to mechanical ventilation and death. Those with a suspected or proven bacterial infection should not receive this therapy.
 - Receipt of tocilizumab will exclude patients from the ACTT-4 study
- **Notes:** Prior in vitro work in SARS indicated IL-6-mediated immune hyper-response as a potential cause of poor outcomes. A small, retrospective study suggested that elevated IL-6 levels may predict need for mechanical ventilation in COVID-19; however, outcomes from randomized trials are conflicting, perhaps demonstrating improvement in need for mechanical ventilation but not consistently. They do not provide clarity on patient selection factors necessary for clear clinical decision-making overall but patients who are most severely have benefited to a greater extent. Over time, an increasing amount of patients have also been treated with corticosteroids, such as dexamethasone, which have previously shown benefit to patients with respiratory failure from COVID-19. The latest 3 large trials are below.
 - **COVACTA** was an industry-sponsored, randomized, placebo-controlled trial that failed to show a difference in clinical outcomes compared to placebo during Apr-May 2020, before glucocorticoids became standard care.
 - Of 438 patients evaluated, 38% were mechanically ventilated, 14% were on high-flow oxygen, 30% were on supplemental low-flow oxygen, and 31% did not require oxygen at baseline
 - Median CRP was 157 mcg/mL (15.7 mg/dL) in the tocilizumab group
 - Mortality rates in each arm were 19.7% vs. 19.4%
 - Glucocorticoids were used in 19.4% and 28.5% of patients
 - **REMAP-CAP** is an international open-label, adaptive platform trial. Tocilizumab (or sarilumab, another IL-6 inhibitor) were compared to standard of care, primarily from June-Nov 2020 when steroids became standard of care

Notes: All outpatients testing positive for SARS-CoV-2 at Nebraska Medicine will automatically be screened for eligibility criteria above and contacted if eligible. For Nebraska Medicine patients with external positive PCR tests, processes are in place to accept those results for eligibility screening - e-mail: PharmacyOutreachTeam@univnebrmedcntnr.mail.onmicrosoft.com or page Antimicrobial Stewardship with questions: (402) 888-0349.

- Benefit has been shown in preventing subsequent ED visits or hospitalization in populations at high-risk of progression. In phase 2-3 trials, the number-needed-to-treat was in the mid-teens for both these agents.

Convalescent Plasma Emergency Use Authorization (EUA) – Plasma must be ordered through the blood bank for inpatient administration (on-call transfusion pager: 402-888-0364).

- **Dosing:** 1-2 units of high-titer plasma (200-400mL) IV once
- **Adverse Effects:** Primarily allergic, hemolytic, and transfusion-related reactions, such as TRALI, volume overload, etc. Studies thus far have shown very low rates of these events in COVID-19 patients.
- **Patient Criteria:** Evidence to date suggests optimal use is for patients administered therapy as early in the disease process as possible, or for those with impaired humoral immunity. However, results from the RECOVERY randomized trial did not demonstrate an impact on mortality, disease progression, or time to discharge in hospitalized patients. Patients are not eligible for therapy under the EUA once respiratory failure with need for invasive ventilatory support is present. EUA patient education, documentation, and adverse event reporting requirements must be adhered to.

REMAP-CAP is an international open-label, adaptive platform trial. Tocilizumab (or sarilumab, another IL-6 inhibitor) were compared to standard of care, primarily from June-Nov 2020 when steroids became standard of care.
At baseline, the 353 patients assigned tocilizumab were more critically ill than previous trials.
- 29% of patients were on high-flow oxygen (>30L/min with 40% FiO₂), 42% on non-invasive ventilation, 29% received invasive mechanical ventilation, and 18% were on vasopressors.
- For patients assigned tocilizumab, median CRP was 15mg/dL (IQR 8.9-22.1).
- The primary endpoint was the number of days patients were free of organ support at hospital day 21.
- Patients in the tocilizumab group had 10 fewer days of organ support (median 10 vs 0 days for placebo).
- Mortality with tocilizumab was 28% vs 36% with placebo. The adjusted odds ratio for in-hospital survival was 1.64 (1.14-2.35) in favor of tocilizumab.
- Benefit of IL-6 antagonists was greater in those receiving glucocorticoids.
- ~80% received corticosteroids and 33% received remdesivir.

RECOVERY is an adaptive, randomized, open-label platform trial of hospitalized patients in the UK. For the tocilizumab portion of the study, patients were included with CRP >7.5 mg/dL and O₂ sat <92%.
- Median CRP was 14.3mg/dL (IQR 10.7-20.4) for the 2022 patients allocated tocilizumab.
- 14% were on mechanical ventilation, 41% received non-invasive respiratory support, and 45% were receiving no respiratory support other than oxygen.
- The primary endpoint was 28-day mortality, which was lower in the tocilizumab group: 29% to 33%.
- 82% of patients were on corticosteroids, which appeared to have a significant impact on the survival benefit of patients receiving tocilizumab. No patients received remdesivir.
- Although this is by far the largest study on the drug, it has not been published in a peer-reviewed journal, and its open-label nature without a placebo control opens it up to a high risk of bias.

Not Recommended (alphabetical order): Risk/benefit ratio does not favor use

- **Azithromycin**[^24,26,36]
 - No activity for SARS-CoV-2. Studies of combination therapy with hydroxychloroquine do not suggest added benefit with azithromycin combination therapy, particularly given study limitations and concern for excess toxicity and antibiotic overuse.

- **Budesonide**[^37,84-85]
 - Observational data suggested lower rates of poor COVID-19 outcomes among patients with asthma and COPD, which led to the hypothesis that inhaled corticosteroid use may be responsible for this finding. A single open-label preliminary trial in early outpatient COVID-19 suggests possible benefit in progression of disease or hospitalization. Preliminary data from a larger extension of this trial are consistent with the initial results. Additional randomized trials are needed to confirm these findings.

- **Colchicine**[^81-82]
 - COICORONA outpatient trial demonstrated minimal benefit of colchicine in mitigating COVID-19 progression, with the number-needed-to-treat much larger than the number-needed-to-harm. RECOVERY randomized trial arm with colchicine has been closed due to lack of evidence for efficacy in hospitalized patients also receiving concomitant dexamethasone. Toxicity can occur at standard doses, particularly in the presence of existing hepatic/renal disease or interacting medications.

- **Darunavir/cobicistat**[^10-11]
 - Available data have not demonstrated efficacy in the treatment of COVID-19 of any severity, although the medication does appear to be well tolerated for the short durations utilized.

- **Fluvoxamine**[^86-88]
 - An SSRI antidepressant with potent affinity for the σ-1 receptor, which regulates cytokine production and inflammatory response. One preliminary randomized controlled trial and one larger open-label prospective cohort both demonstrated efficacy in reduction of need for hospitalization and time to symptom resolution in early outpatient COVID-19. A large nationwide randomized controlled trial is enrolling investigating this therapy for early, mild COVID-19.

- **Hydroxychloroquine**[^1,4,24-28,33-36,44-46,54-58]
 - There were multiple uncontrolled or non-peer-reviewed early clinical reports describing use, with one research group responsible for most of the positive clinical reports. However, there are now multiple clinical trials within various clinical severity and geographic contexts that have demonstrated no benefit in the treatment of COVID-19 disease.
Interferons

- Typically used in combination with ribavirin, interferons have been studied for patients with other coronaviruses, with mixed results. Evaluated in addition to remdesivir as standard-of-care in the third installment of the NIAID adaptive clinical trial, ACTT-3. Results are pending. Their long-term adverse effect profiles are generally unfavorable, but unclear for short-term treatment of COVID-19.

Ivermectin

- Single in vitro study showed inhibition of SARS-CoV-2, however, concentrations used appear to have been far in excess of those achieved in humans with standard doses. It is highly unlikely that any dose which has thus far been studied in humans may achieve adequate lung concentrations to inhibit SARS-CoV-2. Only one appropriately powered, well-designed randomized clinical trial has been completed, and it did not demonstrate any impact on time to resolution of symptoms.

Lopinavir/ritonavir

- Multiple in vitro studies suggesting activity, however, two clinical trials did not demonstrate benefit in either hospitalized or mild/moderate disease patients, or demonstrate an antiviral effect. A third very large clinical trial (RECOVERY) has also now concluded there to be no mortality or other clinical benefit in hospitalized patients.

Nitazoxanide

- Some in vitro studies have demonstrated potency against SARS-CoV-2, though clinical use against other coronaviruses has not demonstrated benefit. Poorly tolerated formulation; safety profile is relatively benign.

Oseltamivir

- Coronaviruses do not utilize neuraminidase for the budding stage of reproduction and therefore no activity is expected.

Ribavirin (oral)

- Typically used in combination with an interferon, ribavirin has been studied for patients with other coronaviruses, with mixed results. Additionally, its adverse effect profile can be significant (anemia), particularly at the dosages for which it has been tested for MERS (~800-3600mg/day).

Zinc

- Varied formulations and dosages of elemental zinc have historically suggested limited efficacy in shortening symptoms due to common cold coronaviruses. There have been a number of small, uncontrolled, or non-peer-reviewed early clinical reports describing use. However, when tested in a small randomized clinical trial for outpatient COVID-19, zinc with or without concomitant high-dose vitamin C did not limit symptom duration, and the trial was terminated for futility.

Drug Class Guidance (alphabetical order)

Angiotensin/RAS Blocking Agents (ACEi/ARBs)

- Do not discontinue these therapies for COVID-19 disease. Multiple recent retrospective studies now support the earlier conclusions of professional societies in cardiology and nephrology that suggestions to discontinue ACEi/ARB therapy to decrease risk for more severe COVID-19 disease appear not to be well supported. Conversely, these agents should not be initiated solely for treatment of COVID-19 disease.

Anticoagulants

- Published guidelines from all relevant associations recommend that COVID-19 inpatients receive pharmacologic VTE prophylaxis. Either a low-molecular-weight heparin or fondaparinux can be used to reduce administration frequency, though heparin may be preferred in ICU patients due to its shorter half-life. Currently, the role of empiric therapeutically dosed anticoagulation is unknown, and it is ideal to enroll patients in randomized trials rather than empirically using therapeutic anticoagulation.

- Interim results from REMAP-CAP, ACTIV-4, & ATTACC demonstrate safety and a decrease in need for ventilation or other organ supportive interventions with therapeutic anticoagulation in moderately ill patients. Mortality benefits are being evaluated in this population as well, and peer-reviewed data is anticipated soon which should help inform decision making for these patients. These trials also demonstrated no reduction in need for organ support and noted safety concerns in ICU patients receiving therapeutic anticoagulation, and enrollment was halted in this arm. For patients with recurrent clotting of central access or CRRT/ECMO circuits, anticoagulation should be considered per standard institutional protocols for those...
Identification and treatment of the underlying cause(s) of COVID-19 associated coagulopathy should continue to be the focus of treatment efforts. Upon discharge, all COVID-19 patients should be educated on signs and symptoms of VTE. Extended thromboprophylaxis beyond discharge should not be routine, however, can be considered on a case-by-case basis if patient-specific risk factors dictate (i.e. low bleeding risk and ongoing VTE risk factors).

Ibuprofen/NSAIDs

- Do not discontinue these therapies for COVID-19 disease. Acetaminophen and NSAIDs are both reasonable options for fever reduction in COVID-19 and may be selected in a patient-specific manner. Although there has been theoretical concern raised for NSAIDs worsening outcomes, no data currently exist to support this. WHO has revised their early statements and issued a clarification consistent with the above recommendation. NIH guidelines similarly recommend that patients taking NSAIDs continue this therapy and that antipyretics be selected in a patient-specific manner without regard for COVID-19 status.

Inhaled Pulmonary Vasodilators

- Limited in vitro evidence suggests nitric oxide may inhibit coronaviruses, and clinical experience has shown that inhaled nitric oxide can reduce mean pulmonary artery pressure and improve oxygenation in patients with non-COVID-19 ARDS. Despite this, SCCM guidelines recommend against use of nitric oxide given an unfavorable risk/benefit ratio for ARDS. NIH guidelines recommend inhaled pulmonary vasodilators only in mechanically ventilated COVID-19 patients with hypoxemia refractory to optimized therapy. If rapid improvement in oxygenation is not seen, therapy should be tapered off. Nitric oxide and others in its class (e.g., iloprost) are being investigated in clinical trials, and agents in this group are still recommended in the presence of clinical factors where they would routinely be considered for critical care.

Steroids

- Initially CDC, WHO, and SCCM did not recommend steroid therapy for COVID-19 outside of a specific alternative indication, such as sepsis, ARDS, or COPD. Based on recent evidence, NIH and IDSA now recommend the use of glucocorticoids (e.g., dexamethasone) in patients with severe COVID-19 disease requiring supplemental oxygen or mechanical ventilation, but against using them in COVID-19 patients without hypoxemia requiring supplemental oxygen. SCCM recommends using glucocorticoids in mechanically ventilated COVID-19 patients with ARDS, but against their use in the absence of ARDS. Steroids are likely to be beneficial in selected patient populations; more specific information regarding dexamethasone use can be found in its standalone section above.

References

https://www.ajtmh.org/content/journals/10.4269/ajtmh-20-0271.

46) FDA Drug Safety Communication. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. 2020 Apr 24.
https://www.fda.gov/media/137250/download.

https://www.jci.org/articles/view/140200.

75) RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): Preliminary results of a randomized, controlled, open-label, platform trial. [Pre-print – not peer reviewed]. https://www.medrxiv.org/content/10.1101/2021.02.11.21249258v1.supplementary-material

85) PRINCIPLE Collaborative Group. Inhaled budesonide for COVID-19 in people at higher risk of adverse outcomes in the community: interim analysis from the PRINCIPLE trial. [Pre-print – not peer reviewed]. https://www.medrxiv.org/content/10.1101/2021.04.10.21254672v1

88) STOP COVID 2 clinical trial. NCT04668950 or https://stopcovidtrial.wustl.edu/.
