GREY MATTERS, GRAY MATTERS, TOO

Current Role and Future Development of Radiation Therapy in Treating Brain Tumors

Chi (Kevin) Zhang, MD, PhD
Radiation Oncology
University of Nebraska Medical Center
Grey Versus Gray
- Radiation therapy for brain tumors

Grey matter in brain: neurons

Gray matters:
Radiation dose is important in treating various brain tumors.

Gray (Gy): unit of radiation energy deposited in the tissue (Joule/kg)
Focus of Today’s Talk

- Most aggressive/lethal primary brain cancer:
 - Glioblastoma (GBM)
 - 12,390 new cases predicted in 2017.

- Most common brain cancer:
 - brain metastasis from cancers such as lung, breast, skin, kidney cancers, etc.
 - Annual US incidence > 170,000
Different Types of Brain Radiation

- Cranio-spinal Irradiation (CSI)
- Whole brain Radiation Therapy (WBRT)
- Partial brain
- Intensity-modulated RT (IMRT)
- Stereotactic radiosurgery (SRS)
Standard Care for GBM Patients < 70yo
EORTC-NCIC Phase III (Stupp) Trial
RT plus Concomitant and Adjuvant Temozolomide (TMZ)

Median OS (M): 12.1 14.6 p<0.001
2-yr survival: 10% 26% p<0.001
PFS (M): 5.0 7.2 P<0.001
Less Radiation for GBM - Treatment in the ‘Elderly’

<table>
<thead>
<tr>
<th>Citation</th>
<th>Patient enrolled</th>
<th>Treatment</th>
<th>Median OS (months)</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keime-Guibert, NEJM 356, 2007</td>
<td>Age≥70yo, good PS</td>
<td>No RT</td>
<td>4.3</td>
<td>RT better than supportive care</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.4Gy</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Roa JCO 22, 2004</td>
<td>Age≥60yo</td>
<td>60Gy in 6 weeks</td>
<td>5.1</td>
<td>Short course no different from long course</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40Gy in 3 weeks</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Wick NOA-08, Lancet 2012</td>
<td>Age≥65yo **</td>
<td>60Gy in 6 weeks</td>
<td>9.6</td>
<td>TMZ is non-inferior to 60Gy RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMZ only</td>
<td>8.6</td>
<td>EFS for MGMT Me’d: TMZ better (8.4 vs 4.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60Gy in 6 weeks</td>
<td>9.6</td>
<td>EFS for MGMT not Me’d: RT better (4.6 vs. 3.3)</td>
</tr>
<tr>
<td>Malmstrom Lancet 2012</td>
<td>Age≥60yo *</td>
<td>60Gy in 6 weeks</td>
<td>6.0</td>
<td>60Gy in 6 wks worse than 34 Gy; 34Gy in 2 weeks not different from TMZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34Gy in 2 weeks</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMZ only</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Roa IAEA JCO 33, 2015</td>
<td>Age≥65yo or frail</td>
<td>40Gy in 3 weeks</td>
<td>6.4</td>
<td>25Gy in 1 week not worse than 40Gy in 3 weeks for poor KPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25Gy in 1 week</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>Perry NEJM 2017</td>
<td>Age >65yo, no fit for combined tx</td>
<td>40Gy in 3 weeks RT only</td>
<td>9.3</td>
<td>+ TMZ better than RT alone. MGMT Me’d pts with RT+TMZ: 13.5M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40Gy in 3 weeks RT + TMZ</td>
<td>7.6</td>
<td></td>
</tr>
</tbody>
</table>
More Radiation for GBM

- NRG-BN001, currently ongoing phase III randomized clinical trial

Newly diagnosed GBM, age 18-70, KPS≥ 70

Standard treatment: 60Gy RT with concurrent and adjuvant temozolomide

Dose-intensified RT: 75Gy RT with concurrent and adjuvant temozolomide

(Photon or Proton treatment allowed)
Brain Metastasis

- Most common brain cancer
- Annual US incidence > 170, 000
- Brain metastases occur in up to 30% of patients with systemic cancer
- Latency to brain metastases diagnosis:
 (median time from initial cancer diagnosis)
 - Lung (6-9 mo)
 - Renal cell (1 yr)
 - Breast, Melanoma, Colon (2 yr)
- Brain metastases histologies:
 - 40-50% from lung cancer
 - 15% from breast cancer
 - 9% from Melanoma
 - 5% from colon cancer
 - 11% from unknown primary
 - Other 13%
Standard Care for Brain Metastasis
- Whole Brain Radiation Therapy (WBRT)

- Corticosteroids (poor prognostic patients)
- Whole Brain Radiation Therapy (WBRT) (30Gy in 10fx or 37.5Gy in 15fx) [standard]
- Surgery + WBRT [standard] (Patchell NEJM 1990)
- WBRT + Stereotactic Radiosurgery (SRS) [standard] (RTOG 9508, Lancet 2004)

WBRT to the entire brain
SRS to only the three brain metastases
Questions about Whole Brain RT

• Why do we still need to do brain RT after brain surgery which completely resected the tumor?
 • 1 year local recurrence: surgery only: ~66%; surgery + WBRT: ~20%
 • 1 year distant failure: surgery only ~50%; surgery +WBRT: ~18%
 • Neurologic death: surgery only: 44%; surgery + WBRT: 14%
 • WBRT added after surgery did not improve survival. (Patchell JAMA 1998)

• Toxicities?
 • + WBRT increases risk of memory decline at 4m.
 • SRS: 24% sig decline vs.
 • +WBRT: 52%
Questions about SRS

- Pros and Cons of SRS?

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• much less neurocognitive toxicities,</td>
<td>• higher rate of distant intracranial recurrence, needs for</td>
</tr>
<tr>
<td>• higher local control for RT-resistant tumors (brain mets from</td>
<td>close imaging followup,</td>
</tr>
<tr>
<td>melanoma, lung cancer, kidney cancer, etc),</td>
<td>• higher rate of radiation necrosis,</td>
</tr>
<tr>
<td></td>
<td>• higher cost.</td>
</tr>
</tbody>
</table>

- What is the maximal number of brain lesions that can be treated with SRS?
 - Current most accepted number is 4.

- What is the maximal size of the brain mets that can be treated with SRS?
 - Most accepted maximal size is 3cm.
Questions about SRS

• Should the volume or number of brain metastases be the limitation of SRS?

Volume is More Important than Number for Survival!!
SRS for Up to 10 Brain Metastases

- 1-10 metastases treated with SRS alone
- Survival non-inferior for 5-10 vs. 2-4 metastases
- WBRT 9%

Yamamoto Lancet Onc 15, 2014
Future Treatment Strategies: Brain Metastases

- Corticosteroids (poor prognostic patients)
- Whole Brain Radiation Therapy (WBRT) (30Gy in 10fx or 37.5Gy in 15fx) [standard]
- Surgery + WBRT [standard]
- WBRT + Stereotactic Radiosurgery (SRS) [standard]

- Hippocampal-sparing WBRT (investigational)
- SRS alone [cutting edge]
- Surgery +/- localized radiation [cutting edge]
- Chemotherapy
- Targeted therapy (TKIs)

- WBRT + radiation sensitizers (investigational)
- WBRT + chemotherapy (no hi quality evidence to support)
- WBRT+immunotherapy
Can Large-sized Brain Metastasis Be treated with SRS?

What to do about this? Too large for single Fraction SRS (>4 cm)

Hypofractionated SRS

9Gy x 3, 6Gy x 4, 5-6Gy x 5
Machines

CT-on-Rail
GammaKnife
TrueBeam (Arc Therapy)
DR
Carbon ion therapy
Thank you!
EORTC 22952-26001

- SRS
- SRS + WBRT (30Gy)
- Surgery
- Surgery + WBRT (30Gy)

SRS: GTV + 1-2mm to 20Gy
 3.5cm max or 2.5cm if multiple

Surgery: GTR required (surgeon defined or MRI)

Primary Outcome:
 Duration of Functional Independence (Time to WHO PS>2)

Kocher JCO 29, 2011
24 Month failure:

- Surgery
 Local: 59
 Distant: 42

- Surgery+WBRT
 Local: 27
 Distant: 23

- SRS
 Local: 31
 Distant: 48

- SRS + WBRT
 Local: 19
 Distant: 33

Kocher JCO 29, 2011
Stereotactic Radiosurgery

- Corticosteroids (poor prognostic patients)
- Whole Brain Radiation Therapy (WBRT) (30Gy in 10fx or 37.5Gy in 15fx) [standard]
- Surgery + WBRT [standard]
- WBRT + Stereotactic Radiosurgery (SRS) [standard]
- What about SRS alone

Median OS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supportive Care</td>
<td>1 mo</td>
</tr>
<tr>
<td>Steroids</td>
<td>2 mo</td>
</tr>
<tr>
<td>WBRT</td>
<td>4 - 7 mo</td>
</tr>
<tr>
<td>Sx + WBRT</td>
<td>6 - 20 mo</td>
</tr>
</tbody>
</table>